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Figure 1: This 320-frame sequence of dance motion is choreographed from (1) the starting frame, (2) the ending frame and (3) the learnt
motion texture from motion captured dance data. Four motion textons are generated from the motion texture and then used to synthesize
all the frames in this sequence. A number of key frames are also shown in the fi gure to demonstrate that the synthesized motion is natural,
smooth and realistic (Two red lines indicate the trajectories of the right hand and right foot).

Abstract

In this paper, we describe a novel technique, called motion texture,
for synthesizing complex human-fi gure motion (e.g., dancing) that
is statistically similar to the original motion captured data. We de-
fi ne motion texture as a set of motion textons and their distribution,
which characterize the stochastic and dynamic nature of the cap-
tured motion. Specifi cally, a motion texton is modeled by a linear
dynamic system (LDS) while the texton distribution is represented
by a transition matrix indicating how likely each texton is switched
to another. We have designed a maximum likelihood algorithm to
learn the motion textons and their relationship from the captured
dance motion. The learnt motion texture can then be used to gener-
ate new animations automatically and/or edit animation sequences
interactively. Most interestingly, motion texture can be manipulated
at different levels, either by changing the fi ne details of a specifi c
motion at the texton level or by designing a new choreography at
the distribution level. Our approach is demonstrated by many syn-
thesized sequences of visually compelling dance motion.
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1 Introduction
Synthesis of realistic character animation is an active research area
and has many applications in entertainment and biomechanics. Re-
cent advances in motion capture techniques and other motion edit-
ing software facilitate our generating of human animation with un-
precedented ease and realism. By recording motion data directly
from real actors and mapping them to computer characters, high
quality motion can be generated very quickly. The captured mo-
tion can also be used to generate new animation sequences ac-
cording to different constraints. Many techniques have been de-
veloped to tackle the diffi cult problem of motion editing. These
techniques include motion signal processing [8], human locomo-
tion in Fourier domain [42], motion warping [43], motion retar-
geting [15, 38], physically based motion transformation [33] and
motion editing with a hierarchy of displacement maps [23]. More
recently, several approaches have been proposed to interactively
synthesize human motion by reordering the preprocessed motion
capture data [21, 1, 22].

To make the edited motion “ realistic” , it is important to under-
stand and incorporate the dynamics of the character motion. In
physically based motion transformation, for instance, Popović and
Witkin [33] obtain a physical spacetime optimization solution from
the fi tted motion of a simplifi ed character model. In this paper, we
present a different approach to the problem of editing captured mo-
tion by learning motion dynamics from motion captured data. We
model local dynamics (of a segment of frames) by a linear dynamic
system, and global dynamics (of the entire sequence) by switching
between these linear systems. The motion dynamics are modeled in
an analytical form which constrains the consecutive body postures.
The meaning of dynamics as used in this paper is different from
that in traditional animation literature, where dynamics denotes an
interactive system involving force-based motion.

We call our model motion texture because motion sequences are
analogous to 2D texture images. Similar to texture images, motion
sequences can be regarded as stochastic processes. However, while
texture images assume a two-dimensional spatial distribution, mo-
tion textures display a one-dimensional temporal distribution. We
defi ne motion texture by a two-level statistical model: a set of mo-
tion textons at the lower level, and the distributions of textons at
the higher level. Intuitively, motion textons are those repetitive pat-
terns in complex human motion. For instance, dance motion may
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Figure 2: With the learnt motion texture, a motion sequence can be divided into multiple segments, labeled as lk where k = 1, ..., Ns. Each
segment may have a different length, and can be represented by one of the Nt (Nt ≤ Ns) textons. In a texton, a local dynamic system with
parameters (A,C, V,W ) is used to describe the dynamics of state variables Xt and observations Yt in a segment.

consist of repeated primitives such as spinning, hopping, kicking,
and tiptoeing.

In our model, the basic element in motion texture is called a mo-
tion texton. A motion texton is represented by a linear dynamic
system (LDS) that captures the dynamics shared by all instances of
this texton in the motion sequence. The texton distribution, or re-
lationship between motion textons, can be modeled by a transition
matrix. Once the motion texture is learnt, it can be used for syn-
thesizing novel motion sequences. The synthesized motion is sta-
tistically similar to, yet visually different from, the motion captured
data. Our model enables users to synthesize and edit the motion at
both the texton level and the distribution level.

The remainder of this paper is organized as follows. After re-
viewing related work in Section 2, we introduce the concept of mo-
tion texture in Section 3, and show how to learn motion textons and
texton distributions in Section 4. The synthesis algorithms using
motion texture are explained in Section 5. Applications of motion
texture including motion synthesis and motion editing are shown in
Section 6. We conclude our paper in Section 7.

2 Related Work

Motion texture. Based on the observation that these repetitive pat-
terns of life-like motion exhibit inherent randomness, Pullen and
Bregler [35] proposed a multi-level sampling approach to synthe-
size new motions that are statistically similar to the original. Sim-
ilar to multi-resolution representations of texture [10] and movie
texture [2], Pullen and Bregler modeled cyclic motions by multi-
resolution signals. The term motion texture was originally used
by Pullen and Bregler (and suggested by Perlin) as their project
name [34]. Our motion texture model is completely different from
theirs. We explicitly model not only local dynamics of those repet-
itive patterns, but also global dynamics on how these patterns are
linked together.

Textons. The concept of texton was fi rst proposed by Julesz [20]
some twenty years ago, although a clear defi nition is still in debate.
Malik et al. [27] used oriented fi lters, Guo et al. [17] used image
templates that can be transformed geometrically and photometri-
cally, and we use LDS as the motion texton. The concept of 2D
texton has been extended to 3D texton by Leung and Malik [24]
to represent images with varying lighting and viewing directions.
Zhu [44] proposed to represent a 2D texture image with textons
and layers of texton maps. However, extracting textons from a tex-
ture has proven to be challenging, as shown by rudimentary textons
in [44, 17]. Although the patches used in the patch-based texture
synthesis may be regarded as textons as well, the concept of texton
map was not explicitly discussed in [12, 25].

Linear dynamic system. Modeling the motion texton with LDS
is related to recent work on dynamic texture analysis and synthesis
for video clips (e.g., video textures [37]). Soatto et al. [40] pro-
posed that a dynamic texture can be modeled by an auto-regressive,
moving average (ARMA) process with unknown input distribution.
A similar approach was also proposed by Fitzgibbon [13] with an

autoregressive (AR) model. These approaches model the temporal
behavior as samples of an underlying continuous process, and are
effective for spatially coherent textures. But they break down when
the underlying dynamics are beyond the scope of a simple linear
dynamics system. Furthermore, the system tends to converge into
the stable state at which synthesis degrades to noise-driven textures.
Bregler [7] also used second order dynamical systems to represent
the dynamical categories (called movemes) of human motion. How-
ever, the movemes are only used to recognize simple human gait
with two or three joint angles. Synthesizing realistic human motion
is very diffi cult due to the high dimensionality of human body and
the variability in human motion over time.

Modeling nonlinear dynamics. Many approaches have been
proposed to model complex motion with multiple linear systems.
It is, however, diffi cult to learn these linear systems along with the
transitions. For instance, North et al. [28] learnt multiple classes
of motions by combining EM (expectation-maximization) [11] and
CONDENSATION [19]. Approximate inference methods had to be
devised to learn a switched linear dynamic system (SLDS) [30, 29]
because exact inference cannot be found. By discretizing state vari-
ables, a hidden Markov model (HMM) can be used to describe mo-
tion dynamics as well [6, 41, 14]. With an HMM, however, the
motion primitives cannot be edited explicitly because they are rep-
resented by a number of hidden states. In our work, a two-level
statistical model is necessary for modeling rich dynamics of human
motion. The transition matrix implicitly models the nonlinear as-
pect of complex human motion by piecewise linear systems.

3 Motion Texture

3.1 A Two-level Statistical Model
We propose a two-level statistical model to represent character mo-
tion. In our model, there are Nt motion textons (or “ textons” for
short from now on) T = {T1, T2, ..., TNt}, represented by respec-
tive texton parameters Θ = {θ1, θ2, ..., θNt}. Our objective is to
divide the motion sequence into Ns segments, such that each seg-
ment can be represented by one of the Nt textons, as shown in Fig-
ure 2. Multiple segments could be represented by the same texton.
Texton distribution, or the relationship between any pair of textons
can be described by counting how many times a texton is switched
to another.

In Figure 2, each segment is labeled as lk, where k = 1, . . . , Ns.
The length of each segment may be different. Because all Nt tex-
tons are learnt from the entire sequence of Ns segments, Nt ≤ Ns

must hold. Segment k starts from frame hk and has a mini-
mum length constraint hk+1 − hk ≥ Tmin. We also defi ne seg-
ment labels as L = {l1, l2, ..., lNs}, and segmentation points as
H = {h1, h2, ..., hNs}.

Our two-level statistical model characterizes the dynamic and
stochastic nature of the fi gure motion. First, we use an LDS to
capture the local linear dynamics and a transition matrix to model
the global non-linear dynamics. Second, we use textons to describe
the repeated patterns in the stochastic process.
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Figure 3: Motion texture is a two-level statistical model with textons and their distribution. (a) After learning, several segments may be labeled
as the same texton. All these segments share the same dynamics. Each texton is represented by an LDS and the initial state distribution P (X1).
(b) Texton distribution can be represented by a transition matrix.

3.2 Motion Texton
Each motion texton is represented by an LDS with the following
state-space model: {

Xt+1 = AtXt + Vt

Yt = CtXt + Wt
(1)

where Xt is the hidden state variable, Yt is the observation, and
Vt and Wt are independent Gaussian noises at time t. Then the pa-
rameters of an LDS can be represented by θ = {A,C, V,W}. Each
texton should have at least Tmin frames so that local dynamics can
be captured. In our system, we model a complex human fi gure with
its global position and 19 joints. Therefore, Yt is a 60− dimen-
sional vector because each joint is represented by 3 joint angles. In
Section 6.1, we will show how we reparameterize the joint rotation
angles with exponential maps [16, 23]. Eventually we can represent
state variables Xt by a 12 ∼ 15-dimensional vector, depending on
the data variance of each segment.

3.3 Distribution of Textons
We assume that the distribution of textons satisfi es the fi rst-order
Markovian dynamics, which could be represented by a transition
matrix

Mij = P (lk = j|lk−1 = i). (2)

Such a transition matrix has been commonly used in HMMs [36]
to indicate the likelihood of switching from one discrete state to
another. Transition matrix has also been used in video texture [37],
where transition points are found such that the video can be looped
back to itself in a minimally obtrusive way. Unlike conventional
HMMs, however, we use hybrid discrete (L and H) and continuous
(X) state variables in our model. Switched linear dynamic systems
(SLDS) [30, 29] also use a hybrid state variable, but model each
frame with a mixture of LDS’ . For synthesis, segment-based LDS
models are desirable because they better capture the stochastic and
dynamic nature of motion.

4 Learning Motion Texture
Given Y1:T = {Y1, Y2, . . . , YT }, or the observation Yt from frame
1 to frame T , our system learns the model parameters {Θ,M} by
fi nding a maximum likelihood (ML) solution

{Θ̂, M̂} = arg max
{Θ,M}

P (Y1:T |Θ,M). (3)

By using L and H , and applying the fi rst-order Markovian prop-
erty, the above equation can be rewritten as:

P (Y1:T |Θ,M) =
∑
L,H

P (Y1:T |Θ,M,L,H)

=
∑
L,H

[
Ns∏
j=1

P (Yhj :hj+1−1|θlj )Mlj lj+1

]
(4)

where MlNs lNs+1 = 1. In Eq. 4, the fi rst term is the likelihood
of observation given the LDS model, the second term refl ects the
transition between two adjacent LDS’ .

Considering L and H as hidden variables, we can use the
EM [11] algorithm to solve the above maximum likelihood prob-
lem. The algorithm is looped until it converges to a local optimum.

• E-step: An inference process is used to obtain segmentation
points H and segment labels L. Details are in Appendix A.

• M-step: Model parameters Θ are updated by fi tting LDS’ .
Details are provided in Appendix B.

The transition matrix Mij is set by counting the labels of seg-

ments: Mij =
Ns∑
k=2

δ(lk−1 = i)δ(lk = j). The matrix M is

then normalized such that
Nt∑
j=1

Mij = 1.

We take a greedy approach to incrementally initialize our model.
First, we use Tmin frames to fi t an LDS i, and incrementally label
the subsequent frames to segment i until the fi tting error is above a
given threshold. Then all existing LDS’ (from 1 to i) learnt from
all preceding segments (possibly more than i) are tested on the re-
maining unlabeled Tmin frames, and the best-fi t LDS is chosen. If
the smallest fi tting error exceeds the given threshold, i.e., none of
those LDS’ fi ts the observation well, we introduce a new LDS and
repeat the above process until the entire sequence is processed.

4.1 Discussion
In the learning process, the user needs to specify a threshold of
model fi tting error. Once the threshold is given, the number of
textons Nt is automatically determined by the above initialization
step. The bigger the threshold, the longer the segments, and the
fewer the number of textons. Model selection methods [3] such as
BIC (Bayesian Information Criteria) or MDL (Minimum Descrip-
tion Length) can also be used to learn Nt automatically.

Another important parameter that the user needs to determine is
Tmin. Tmin must be long enough to capture the local dynamics of
motion. In our system, we have chosen Tmin to be approximately
one second, corresponding to most beats in the disco music of the
dance sequence.

What we have obtained in the learning process are segment la-
bels, segmentation points, textons, and texton distribution. For the
purpose of synthesis, a texton should also include an initial state
distribution P (X1). X1 can be regarded as the initial or key poses
of a texton. Because our dynamics model is second order, we use
the fi rst two frames x1, x2 of each segment to represent the key
poses X1. Figure 3 shows the two-level motion texture model.
Since we may have labeled several segments for an LDS, we rep-
resent P (X1) in a nonparametric way. In other words, we simply
keep all the starting poses X1 of the segments which are labeled by
the same LDS.
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1. Initialization:

Generate the fi rst two poses {x1, x2} by sampling the initial
state distribution Pi(X1).

2. Iterate for t = 3, 4, . . .

(a) Draw samples from the noise term vt,

(b) Compute xt by the dynamics model (Eq. 10),

(c) Synthesize yt by projecting xt to the motion space
(Eq. 11).

Figure 4: Texton synthesis by sampling noise.

5 Synthesis with Motion Texture
With the learnt motion texture, new motions can be synthesized.
Moreover, we can edit the motion interactively, both at the texton
level and at the distribution level.

5.1 A Two-step Synthesis Algorithm
Motion texture decouples global nonlinear dynamics (transition
matrix) from local linear dynamics (textons). Accordingly, we de-
velop a two-step approach to synthesize new motions. First, a tex-
ton path needs to be generated in the state space. A straightfor-
ward approach is to randomly sample the texton distribution, so
that we can obtain an infi nitely long texton sequence. A more inter-
esting way is to allow the user to edit the texton path interactively.
Given two textons and their associated key poses, for instance, our
algorithm can generate a most likely texton sequence that passes
through those key poses (see Section 5.2).

Once we have the texton sequence, the second step in synthesis
is conceptually straightforward. In principle, given a texton and its
key poses (fi rst two frames to be exact), a motion sequence can be
synthesized frame by frame with the learnt LDS and sampled noise.
However, the prediction power of LDS decreases after some critical
length of the sequence as LDS approaches its steady state. This
is why we propose in Section 5.4 a constrained texton synthesis
algorithm that preserves the same dynamics of the given texton,
with two additional frames at the end of the synthesized segment.
Because we can use the key poses of the texton next to the one we
synthesize, a smooth motion transition between two neighboring
textons can be achieved.

5.2 Texton Path Planning
Given two motion textons Tu and Tv , the goal of path planning is to
fi nd a single best path, Π̄ = {S̄1S̄2 . . . S̄n} (n ≤ Nt), which starts
at S̄1 = Tu and ends at S̄n = Tv . Depending on the application,
we propose two different approaches.

5.2.1 Finding the Lowest Cost Path
In this approach, we favor multiple “ good” transitions from Tu to
Tv . Since the transition matrix is defi ned on a fi rst-order Markov
chain, the best path is equivalent to

Π̄ = arg max
Π

P (S1S2 . . . Sn|S1 = Tu, Sn = Tv,M)

= arg max
Π

P (TuS2)P (S2S3) · · ·P (Sn−1Tv)

= − arg min
Π

(logP (TuS2) + logP (S2S3) +

. . . + logP (Sn−1Tv)). (5)

If we consider each texton as a vertex, and the negative Log proba-
bility as the weight associated with the edge between two vertices,

1. Initialization:

(a) Generate the fi rst two poses {xi1, xi2} by sampling the
initial state distribution Pi(X1). x1 = xi1, x2 = xi2.

(b) Similarly, generate {xj1, xj2} from Pj(X1). Then the
end constraints (xl−1, xl) are obtained by reprojecting
{xj1, xj2} (Eq. 7).

(c) For t = 2 . . . (l− 1), draw samples from the noise term
vt and form vector b (Eq. 9).

2. Synthesis:

(a) Synthesize x3:l−2 by solving Eq. 8.

(b) Synthesize y1:l by projecting x1:l to the motion space.

Figure 5: Texton synthesis with constrained LDS.

the transition matrix forms a weighted, directed graph G. Then the
shortest path problem in Eq. 5 can be effi ciently solved in O(N2)
time by Dijkstra’s algorithm [9].

Since each texton is represented by a single LDS, the self-
connecting vertices in graph G will appear at most once when we
seek for the optimal texton path by Dijkstra’s algorithm. In or-
der to enrich the synthesized motion, we further repeat each texton
on the path according to its self-transition probability. Specifi cally,
we randomly sample the transition probability P (Sj |Si) and repeat
texton i until a different texton is sampled.

5.2.2 Specifying the Path Length

Due to limited training data, interpolation between two motion tex-
tons may result in a long path. An alternative way of texton path
planning is to specify the path length. In this case, we need to trade-
off cost and length. The best path between Tu and Tv with length L
(L <

∣∣Π̄∣∣) can be found by a dynamic programming algorithm [36]
in O(LN2

s ) time.

5.3 Texton Synthesis by Sampling Noise

Once we have the texton path, we can generate a new motion se-
quence by synthesizing motion for all the textons. The fi rst task is
to synthesize motion for a single texton i. A simple but effective
approach is to draw samples from the white noise vt (see Appendix
B) frame by frame. The key poses of texton i are the two starting
poses, represented by x1 and x2. The fi nal synthesis result can be
generated by projecting xt from the state space to motion space yt.
The algorithm is summarized in Figure 4.

In theory, an infi nitely long sequence can be synthesized from
the given texton after initialization and by sampling noise. How-
ever, the synthesized motion will inevitably depart from the origi-
nal motion as time progresses, as shown by the difference between
Figures 7(a) and 7(b). This behavior is due to the fact that LDS
learns only locally consistent motion patterns. Moreover, the syn-
thesis errors will accumulate (Figure 7(b)) as the hidden variable xt

propagates.
Noise-driven synthesis has been widely used in animation. For

example, Perlin-noise [31] has been used for procedural anima-
tion [32]. Noises are also used for animating cyclic running mo-
tion [4], dynamic simulation [18] and animating by multi-level sam-
pling [35]. Our approach is similar to Soatto’s ARMA model [40]
that can generate dynamic texture by sampling noise, when video
frames instead of fi gure joints are considered.
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Global Translation (3)

(57)Joint Rotation (57)
Exponential Map

(local reparameterization)

Displacement (3)

SVD
+ (60)ty (12~15)

tx(60)

Figure 6: Representation of observation and state variables. We model the human fi gure with 19 joint angles and a global translation. After
re-parameterizing the joint angles with exponential maps, we construct the observation variable Yt with a 60-dimensional vector. The state
variable Xt is only 12 ∼ 15-dimensional because it represents the subspace of Yt after SVD.

(a) (b) (c)

Figure 7: Comparison between constrained and unconstrained synthesis with a single texton. (a) Original motion. (b) Synthesized motion
without end constraints. The dynamics deviate from the original one as time progresses. (c) Synthesized motion with end constraints. The
original dynamics are kept. The last two frames in (a) are chosen as the end constraints.

5.4 Texton Synthesis with Constrained LDS
We preserve texton dynamics by setting the end constraints of a
synthesized segment. Since we have kept key poses (starting two
poses) for each texton, we can incorporate those of the following
texton (e.g., the right next one in the texton path) as hard constraints
into the synthesis process. Let Si and Sj be the two adjacent tex-
tons in the motion path, and {xi1, xi2} and {xj1, xj2} be the cor-
responding key poses. Rearranging the dynamic equation in Eq. 10
(Appendix B), we have

[
− A2 −A1 I

] [
xt−1

xt

xt+1

]
= D + Bnt (6)

where I is the identity matrix. In order to achieve a smooth transi-
tion from Si to Sj , we set the following hard constraints{

x1 = xi1, x2 = xi2

xl−1 = CT
i Cjxj1, xl = CT

i Cjxj2
(7)

Note that we need to re-project the end constraints since the ob-
servation model Ct (Eq. 1) is switched between motion textons.
Then the in-between frames x3:l−2 = [x3, x4, · · · , xl−2]

T (l is the
length of the synthesized texton i) can be synthesized by solving a
block-banded system of linear equations:

AX = b (8)

where

A =




I

−Ai1 I 0

−Ai2 −Ai1 I

. . .
. . .

. . .

−Ai2 −Ai1 I

0 −Ai2 −Ai1

−Ai2




b =




Ai1xi2 + Ai2xi1 + Di + Biv2

Ai2x2 + Di + Biv3

Di + Biv4

.

.

.
Di + Bivl−3

−xl−1 + Di + Bivl−2

Ai1xl−1 − xl + Di + Bivl−1




(9)

The algorithm is summarized in Figure 5.
A by-product of the constrained synthesis is smooth transition

between two textons because the two starting poses of the second
texton are guaranteed from the synthesis processes of both the fi rst
and the second textons.

6 Experimental Results
We have captured more than 20 minutes of dance motion of a
professional dancer (performing mostly disco) at high frequency
(60Hz) as our training data. We chose dance motion in our study
because dancing is representative, complex and exhibits stochas-
tic behavior with repeated patterns. It took approximately 4 hours
to learn the motion texture of 49800 frames on an Intel Pentium
IV 1.4GHz computer with 1G memory. A total of 246 textons are
found after learning. The length of the textons ranges from 60 to
172 frames. Synthesizing a texton takes only 25ms to 35ms because
it only involves solving a block-banded system of linear equations.
Therefore, we can synthesize the character motion in real-time.

6.1 Dealing with High-dimensional Motion Data
To deal with the high dimensionality of human motion, one must
simplify characters, as shown in [33]. K-means clustering and PCA
are also used in [5, 41] to model the complex deformation of human
body. However, all these methods failed to fi nd the intrinsically
low-dimensional subspace of the motion patterns embedded in the
high-dimensional nonlinear data space.

In our system, we model a complex human fi gure with 19 joints
(57 rotation angles) plus its global position (3 translations). For
global translation, we compute the displacement because we need
to accumulate the subsequent translation to the previous frame for
synthesis. For 3D rotation, we use exponential maps [16, 23] in-
stead of Euler angles, unit quaternions [39], or rotation matrices.
Using exponential maps [16, 23] for representing joint rotation an-
gles is essential because they are locally linear. Singularities in ex-
ponential maps are avoided in our system since the rotation change
at each step in a texton is small (obviously less than π).

The observation Yt is thus a 60-dimensional vector, with a
57-dimensional locally reparameterized exponential map and a
3-dimensional translation displacement. The state variables Xt

should be chosen to be of low dimensionality and highly correlated
with the observation Yt. Using a locally linear exponential map and
the translation displacement, we are able to apply SVD on Yt and
represent Xt by 12 ∼ 15 (depending on the specifi c texton) most
signifi cant principal vectors of Yt.
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(a) (b)

Figure 8: Synthesis with two adjacent textons. (a) Synthesizing two adjacent textons independently results in a jump at the transition. (b)
By setting the starting poses of the second texton as the end constraints of the fi rst texton, we achieve smooth motion at the transition. Pay
attention to the difference between the ending frame of the fi rst texton and the starting frame of the second texton in both (a) and (b), shown
as key frames in the middle.

(a) (b) (c)

Figure 9: (a) Original texton. (b) and (c) are synthesized textons perturbed by noise. Notice there are differences in the intermediate key
poses of (b) and (c). The synthesized textons have the same content as the original texton, but different fi ne details.

6.2 Examples

We demonstrate our approach with a number of synthesis and edit-
ing examples, also shown in the accompanying videotape.

Constrained versus unconstrained texton synthesis. Figure 7
shows the results of synthesized motion from a single texton. In this
68-frame motion, the dancer changes her orientation from left to
right, which represents a swing dance motion (Figure 7(a)). Given
the learnt LDS and the starting two poses, we can synthesize a mo-
tion sequence by simply sampling noise (Figure 7(b)). The syn-
thesized motion looks similar to the original dynamics, but gradu-
ally deviates as time progresses. By adding constraints of ending
frames, we can ensure that the synthesized sequence (Figure 7(c))
has similar dynamics to the original. The least-squares solver took
approximately 27ms to synthesize this sequence.

Synthesis with two adjacent textons. Figure 8 illustrates that
a smooth transition can be achieved between two adjacent textons.
Because we represent P (X1) in a non-parametric way, the starting
pose of the second texton may be rather different from the ending
pose of the fi rst texton. Synthesizing these two textons separately
results in a jump in the sequence (Figure 8(a)). We solve the prob-
lem of preserving smooth transitions by applying the starting poses
of the second texton as the end constraints of the fi rst texton (Fig-
ure 8(b)).

Noise-driven synthesis with different fine details. Figure 9
shows that by varying noise slightly, we can generate two different
motions from the same texton. Yet the dynamics of two sequences
look perceptually similar.

Extrapolating new dynamics. The learnt motion texton can be
generalized to synthesize novel motion. In the motion shown in
Figure 10(a), the dancer waves her left arm once. From the texton
of 127 frames, we can synthesize a longer sequence of 188 frames
that contains new motion (the dancer waves her arm twice, as shown
in Figure 10(d)). Comparison to simple linear interpolation with the
same constraints is shown in Figure 10(c).

Editing a texton. Motion texture can be edited at the texton level
with precise pose changes. Figure 11 shows that after an intermedi-
ate frame in a texton sequence is edited, we obtain a new sequence
similar to the original one, without the need for modifying any other
frames.

Virtual Choreographer. Figure 1 shows that a sequence of 320
frames can be automatically generated given the starting and end-
ing frames, and the learnt motion texture. This is similar to what
a choreographer does. The synthesis has two steps: texton path
generation, and motion synthesis from textons.

Ballroom demo. By randomly sampling motion texture, we can
synthesize an infi nitely long dance sequence. We present in the
videotape a character dancing to the music.

7 Discussion
Summary. In this paper, we have proposed a two-level statistical
model, called motion texture, to capture complex motion dynam-
ics. Motion texture is represented by a set of motion textons and
their distribution. Local dynamics are captured by motion textons
using linear dynamic systems, while global dynamics are modeled
by switching between the textons. With the learnt motion texture,
we can synthesize and edit motion easily.

Limitations. Although our approach has been effective on gen-
erating realistic and dynamic motion, there remain several areas for
improvement. First, because we calculate the texton distribution by
counting how many times a texton is switched to another, our ap-
proach is best suited for motions consisting of frequently repeated
patterns such as disco dance. The synthesized motion may lack
global variations when the training data is limited.

In order to enrich the synthesis variation, we have perturbed the
dynamics model by Gaussian noise. We did not incorporate any
physical model into the synthesis algorithm. So there is no guaran-
tee that the synthesized motion is physically realistic in the absolute
sense. However, since the LDS’ preserve the motion dynamics very
well, our algorithm captures the essential properties of the original
motion.

Although our algorithm allows users to edit the motion at the
texton level, the edited pose can not deviate from the original one
too much (as shown in Fig 11). Otherwise the additional hard con-
straint may contaminate the synthesized texton. Another shortcom-
ing of our algorithm is that interacting with environment objects is
not taken into consideration. Nevertheless, our algorithm provides
a good initialization of an animation sequence, which can be further
improved by other animation tools.
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(a) (c)

(b) (d)

Figure 10: (a) Original texton (127 frames). (b) Synthesized texton by LDS (127 frames). (c) Linear time warping of the original texton (188
frames) has a slow motion effect. (d) Synthesized motion by LDS (188 frames). Our synthesis algorithm generalizes the learnt dynamics by
extrapolating new motions. Notice the difference between the trajectories in (c) and (d). See the accompanying video for comparison.

(a) (b)

Figure 11: Editing a texton. (a) Original texton. (b) Synthesized texton by modifying an intermediate frame, but without changing any other
frames. The specifi ed frame is used as an additional hard constraint to synthesize the texton.
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A. Inference algorithm for H and L
In inference we use current parameters of textons to recognize the
motion sequence. More specifi cally, we divide the motion sequence
into a sequence of concatenated segments and label each segment
to a texton. The optimal solution could be derived by maximizing
likelihood in Eq. 4. We can effi ciently compute globally optimal
segmentation points H = {h2, ..., hNs} and segment labels L =
{l1, ..., lNs} by a dynamic programming algorithm. The details of
the algorithm are given by the following.

We use Gn(t) to represent the maximum value of the likelihood
derived from dividing the motion sequence ending at frame t into
a concatenated sequence of n segments. En(t) and Fn(t) are used
to represent the label and the beginning point of the last segment of
the sequence to achieve Gn(t).

1. Initialization

G1(t) = max
1≤i≤Nt

P (Y1:t|θi),

E1(t) = arg max
i

P (Y1:t|θi), Tmin ≤ t ≤ T.

2. Loop while 2 ≤ n ≤ T

Tmin
, n · Tmin ≤ t ≤ T

Gn(t) = max
1≤i≤Nt

(n−1)·Tmin<b≤(t−Tmin)

[Gn−1(b− 1)P (Yb:t|θi)Mli]

En(t), Fn(t) = arg max
i,b

[Gn−1(b− 1)P (Yb:t|θi)Mli]

where l = En−1(b− 1).

3. Final solution

G(T ) = max
1≤n≤ T

Tmin

Gn(T ).

Ns = arg max
n

Gn(T ).

4. Backtrack the segment points and labels

hNs+1 = T + 1, lNs = ENs(T ), h1 = 1

hn = Fn(hn+1−1), ln−1 = En−1(hn−1), Ns ≥ n > 1.

For T frames and Nt textons, the complexity is O(NtT
2).

B. Fitting an LDS
Given a segment of an observation sequence, we can learn
the model parameters of a linear dynamic system (LDS).
In order to capture richer dynamics (velocity and accel-
eration), we use a second-order linear dynamic system:

Dynamics Model: xt+1 = A1xt + A2xt−1 + D + Bvt

Observation Model: yt = Ctxt + Wt

(10)

(11)

where vt ∼ N(0, 1), Wt ∼ N(0, R), and R is the covariance
matrix. Note that this model could also be written in the standard
form of Eq. 1 by setting Xt =

[
xt

xt−1

]
, At =

[
A1 A2
I 0

]
, Vt ∼

N(
[

D
0

]
,
[

BT B 0
0 0

]
).

For any linear dynamic system, the choice of its model pa-
rameters is not unique. For instance, by choosing X̂ = TX ,
Â = TAT−1, Ĉ = CT−1, in which T is an arbitrary full rank
square matrix, we will obtain another linear dynamic system which
generates exactly the same observation. In order to fi nd a unique so-
lution, canonical model realizations need to be considered, as sug-
gested in [40]. And a closed form approximated estimation of the
model parameters could be derived as follows [26]:

1. Observation Model 1. We calculate the SVD of the observa-
tion sequence Y1:T , [U, S, V ] = SV D(Y1:T ), and set:

C = U, X1:T = SV T . (12)

2. Dynamics Model. The maximum likelihood estimation of
A1, A2, D,B is given by:

[A1, A2] = [R0,0, R0,1] ·
[

R1,1 R2,1

R1,2 R2,2

]−1

D =
1

T − 2

(
Q0 −

2∑
i=1

AiQi

)

BBT =
1

T − 2

(
R0,0 −

2∑
i=1

AiRi,0

) (13)

where Qi, Ri,j is:

Qi =

T∑
t=3

Xt−i

Ri,j =

T∑
t=3

Xt−i(Xt−j)
T − 1

T − 2
QiQ

T
j .

In learning, we may need to fi t an LDS on several segments. For
this purpose, we can concatenate such segments into a sequence and
apply the same algorithm except drop some terms on boundaries of
the segments when Qi and Rij are calculated.

1We do not incorporate Wt in the learning process because the observa-
tion noise is not used for synthesis.
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